List of Symbols

Transport coefficients

η

shear viscosity

λ

thermal conductivity

ηV

bulk viscosity

ζ

Brownian friction coefficient

D

self diffusion coefficient

Thermodynamic fluxes

P

the pressure tensor

JQ

heat flux

Π

viscous pressure tensor

Thermodynamic forces

∇u

strain rate tensor

γ

shear rate = ∂ux∕∂y

∇T

temperature gradient

∇.u

dilation rate

u

streaming velocity

ε

elastic deformation

∇ε

strain tensor

dilation rate = ⅓

Thermodynamic state variables

T

temperature

kB

Boltzmann's Constant

β

1∕kBT

V

volume

p

hydrostatic pressure, = ⅓ tr(P)

N

number of particles

ρ

mass density

n

number density

Thermodynamic constants

G

shear modulus

CV

constant volume specific heat

Cp

constant pressure, specific heat

cv

constant volume,specific heat per unit mass

cp

constant pressure,specific heat per unit mass

DT

isochoric thermal diffusivity

Thermodynamic potentials

E

internal energy

U(r,t)

internal energy per unit mass

S

entropy

s(r,t)

internal energy per unit volume

σ

entropy source strength = rate of spontaneous entropy production per unit volume

I

enthalpy

Q

heat

Mechanics

L

Lagrangian

H

Hamiltonian

H0

phase variable whose average is the internal energy

I0

phase variable whose average is the enthalpy

J(Γ)

dissipative flux

Fe

external field

α

thermostatting multiplier

iL

p-Liouvillean

iL

f-Liouvillean

A

Hermitian adjoint of A

Λ

phase space compression factor

expR

right time-ordered exponential

expL

left time-ordered exponential

UR(t1,t2)

incremental p propagator t1 to t2

UR(t1,t2)-1

inverse of UR(t1,t2), take phase variables from t2 to t1, UR(t1,t2)=UL(t1,t2)

UR(t1,t2)

incremental f propagator t1 to t2

TR

right time-ordering opertator

TL

left time-ordering opertator

CAB(t)

equilibrium time correlation function = ⟨A(t)B*⟩

[A,B]

commutator bracket

{A,B}

Poisson bracket

δ(t)

Dirac delta function (of time)

δ(r-ri)

Kirkwood delta function

=0, |r-ri|> an infinitesmal macroscopic distance, l

=1∕l3, |r-ri|< an infinitesmal macroscopic distance, I

f(k)=∫dreikrf(r)

spatial Fourier transform

f(ω)=∫0dre-iωtf(t)

temporal Fourier-Laplace transform ∏

dS

infinitesmal vector area element

J

transverse momentum current

ϕ

total intermolecular potential energy

ϕij

potential energy of particle i,j

K

total kinetic energy

fc

canonical distribution function

fT

isokinetic distribution function

m

particle mass

ri

position of particle i

rij=rj-ri

vi

velocity of particle i