Transport coefficients
η |
shear viscosity |
λ |
thermal conductivity |
ηV |
bulk viscosity |
ζ |
Brownian friction coefficient |
D |
self diffusion coefficient |
Thermodynamic fluxes
P |
the pressure tensor |
JQ |
heat flux |
Π |
viscous pressure tensor |
Thermodynamic forces
∇u |
strain rate tensor |
γ |
shear rate = ∂ux∕∂y |
∇T |
temperature gradient |
∇.u |
dilation rate |
u |
streaming velocity |
ε |
elastic deformation |
∇ε |
strain tensor |
|
dilation rate = ⅓ |
Thermodynamic state variables
T |
temperature |
kB |
Boltzmann's Constant |
β |
1∕kBT |
V |
volume |
p |
hydrostatic pressure, = ⅓ tr(P) |
N |
number of particles |
ρ |
mass density |
n |
number density |
Thermodynamic constants
G |
shear modulus |
CV |
constant volume specific heat |
Cp |
constant pressure, specific heat |
cv |
constant volume,specific heat per unit mass |
cp |
constant pressure,specific heat per unit mass |
DT |
isochoric thermal diffusivity |
Thermodynamic potentials
E |
internal energy |
U(r,t) |
internal energy per unit mass |
S |
entropy |
s(r,t) |
internal energy per unit volume |
σ |
entropy source strength = rate of spontaneous entropy production per unit volume |
I |
enthalpy |
Q |
heat |
Mechanics
L |
Lagrangian |
H |
Hamiltonian |
H0 |
phase variable whose average is the internal energy |
I0 |
phase variable whose average is the enthalpy |
J(Γ) |
dissipative flux |
Fe |
external field |
α |
thermostatting multiplier |
iL |
p-Liouvillean |
iL |
f-Liouvillean |
A † |
Hermitian adjoint of A |
Λ |
phase space compression factor |
expR |
right time-ordered exponential |
expL |
left time-ordered exponential |
UR(t1,t2) |
incremental p propagator t1 to t2 |
UR(t1,t2)-1 |
inverse of UR(t1,t2), take phase variables from t2 to t1, UR(t1,t2)=UL(t1,t2) |
UR(t1,t2) |
incremental f propagator t1 to t2 |
TR |
right time-ordering opertator |
TL |
left time-ordering opertator |
CAB(t) |
equilibrium time correlation function = 〈A(t)B*〉 |
[A,B] |
commutator bracket |
{A,B} |
Poisson bracket |
δ(t) |
Dirac delta function (of time) |
δ(r-ri) |
Kirkwood delta function |
=0, |r-ri|> an infinitesmal macroscopic distance, l |
|
=1∕l3, |r-ri|< an infinitesmal macroscopic distance, I |
|
f(k)=∫dreik⋅rf(r) |
spatial Fourier transform |
f(ω)=∫∞0dre-iωtf(t) |
temporal Fourier-Laplace transform ∏ |
dS |
infinitesmal vector area element |
J⊥ |
transverse momentum current |
ϕ |
total intermolecular potential energy |
ϕij |
potential energy of particle i,j |
K |
total kinetic energy |
fc |
canonical distribution function |
fT |
isokinetic distribution function |
m |
particle mass |
ri |
position of particle i |
rij=rj-ri |
|
vi |
velocity of particle i |